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On solutions to coupled multiparameter nonlinear Sturm-Liouville
boundary value problems whose state components have a specified
nodal structure '
by

v

Robert Stephen Cantrell *

Abstract. In preceding articles ([3] and [5]), we began an examination of the structure of the
solution set to the two-parameter system

“(E@) +a@u=du+ fluv)y -
() —(p2(z)) + q2(z)v = pv +g(u,v)v ’

u(a) = u(b) = 0 = v(a) = v(b).

In this article, we treat the case left uncovered in our previous analysis; namely, we assume
f(s,0) =0 and g(0,t) = 0 for all 5, ¢t € IR. In this situation, solutions to (%) of the form (A, s, u,0)
or (A, 4,0, v) lie in linear subspaces of IR? x (C}[a, b])%. As such, they are neither locally expressable
as functions of (A, 4) nor are & priori bounded in terms of (), p), as was crucial to the analysis
in [3] and [5]. Nevertheless, we demonstrate that solutions to (*) of the form (A, p,u,v) with u
having n — 1 simple zeros in (a,b) and v having m — 1 simple zeros in (a,b), where n and m are
positive integers, arise as global secondary bifurcations from solutions of the form (A, p,u,0) with
u having n — 1 simple zeros in (a,b) and from solutions of the form (A, g, 0,v) with v having m — 1
simple zeros in (a,b). Moreover; we establish that solutions to (¥) of the form (A, u,u,v) with u
having n — 1 simple zeros in (a,b) and v having m — 1 simple zeros in (a,b) serve as a link between
solutions of the form (A, g1, u,0) with u having n — 1 simple zeros in (e,b) and solutions of the form
(A, ,0,v) with v having m — 1 simple zeros in (a,b). The analysis in this article when combined"
with that in [3] and [5] provides a fairly comprehensive examination of the structure of the solution
set to ().

* The research for this article was supported in part by NSF grants DMS8802346 and DMS9002943.
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1. Introduction.
Coupled systems of the form
(1.1) —(piuf)' + qus = Mg + fi(wi, o un)ui  in (a,b)
y;(a) = 0 = u;(b), .

where J); is a real parameter and 1 = 1,2,...,n, have the property that if for instance
Umsy =+ » = up = 0, where 1 < m < n and (uy, ..., un) solves

(1.2) ~(piul) + @i = Miwi + filwi,+ +8m, 0,0+ -, 0)u; in (a,b) ;
ui(a) = 0 = w;(b)

for some A}, { = 1,...,m, then (uy,+++, 4, 0,--+,0) solves (1.1) for (A3,--, A%, A1, % An)s
with Ay, ... An arbitrary real parameters. Consequently the solution set to (1.2} can be
viewed as being embedded in the solution set to (1.1) in a quite natural way. Since this
phenomenon obtains if any proper subcollection of {,...,4,} is chosen and its members
set to the zero function on [e,b], (1.1) is a ready and natural systems extension of the
nonlinear Sturm-Liouville boundary value problem

(1.3) —(pv')' +qu=Au+ f(w)u in(a,b)
(1.4) u(a) = 0 = u(b).

Nontrivial solutions to (1.3)-(1.4) have only simple zeros. That such is the case follows
from the uniqueness of solutions to initial value problems for (1.3). Consequently, the
number of internal zeros of solutions to (1.3)-(1.4) can be used as a regime for classification.
Such is the basis of the celebrated examination of the global structure of the solution set to
(1.3)-(1.4), due to Crandall and Rabinowitz [6], among others. In particular, it is known;
provided f(0) = 0, that there is a sequence of real numbers A() < X < ... < AW <.,
with A — 0o as n — 00, such that the linear boundary value problem

(1.5) —(pw')' + quw =A"w  in(a,b)
w(a) = 0 = w(b)

admits a solution w having n — 1 simple zeros in (a,b) and that nontrivial solutions to
(1.3)-(1.4) having n — 1 simple zeros in (a,b) emanate (in say IR x C}[e,b]) from (A(™),0).
Moreover, such solutions join (/\("), 0) to form a one-dimensional continuum C, of solutions
to (1.3)-(1.4) which is unbounded in IR x Cjla, b).

It is evident from the observations regarding (1.3) that if

(1.6) —(piud)' + qui = Aiwi + filua, )
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in (a,b) and u; # 0, then u; has only simple zeros in (g, b). It follows from [6] and our initial
observations that there exist n-dimensional continua (subsets of IR" x (C}la,b])™) of solu-
tions  to (1.1) emanating  from  the  trivial s‘olutions (A%, Az,
vty Any 0, ..., 0) and characterized as follows. Namely, for any such continuum C, there is an
i€ {1,2,..,n} and a k € Zy so that if (A1y v Ans U1, e, Un) € C and (ul,...,u,:) # (0, ...,0),
then u; has k— 1 simple zeros in (a,b), u; =0 for 7 # 1, (X, u;) solves (16) W1t¥1 uj = 0 for
j # 1, and there is no constraint on Aj, J # 1. Moreover, the choice of ¢ and k is arbitrary.

Some obvious questions arise. Do n-dimensional continua of solutions to .(1..1) with
more than one nontrivial state component exist? Can the number of nontrlvxz%l state
components and the nodal structure of the nontrivial state components be spec1ﬁfed at
will? Does a continuum of solutions to (1.1) with £ nontrivial state components arise as
a bifurcation from continua of solutions to (1.1) with £—1 nontrivial state component:.s?
Can two continua of solutions to (1.1) each having £ — 1 nontrivial state components W}th
¢ — 2 of them in common be linked together via a continuum of solutions to (1.1) having
£ nontrivial state components?

We have begun an investigation of these questions in [3] and [5], dealing with the
natural first case, namely n = 2, considering the system

—(p1e')' + qrv = Au+ f(u,v)u
in (a,b)
(x.7) —(pav')' + q2v = pv + g(u,v)v

u(a) = u(b) = 0 = v(a) = v(b),

with f(0,0) = 0 = ¢(0, 0). In {3], we demonstrated fairly genex.'al conditi(.)ns for the
existence of 2-dimensional continua of solutions to (1.7) with u having n — 1 smfple Z€eros
in (a,b) and v having m —1 simple zeros in (a,b). Specifically, we showed that it suffices
for the continuum Cy, (in IR X Cjla, b]) of solutions to

—(pv)' + v = Au + f(u,0)u
u(a) = 0 = u(b)

emerging in IR x C}|a,b] from (A(),0), where A(™ is as in (1.5) to(l;e such that the
projection of Cn N B((A\*),0),¢) into IR is not merely th.e sin.gleton {}1\ 7} for any e> 0.
(Here B((A(,0),¢) denotes the ball about (A", 0) of radius € in IR x Cila, b] ) In this case,
9-dimensional continua of solutions to (1.7) with v havingn—1 simple zeros in (a,b) and v
having m —1 simple zeros in (a,b) emanate from C,, where Crn={(A,1,%,0) : (A, ) e Cn}
In [5], we placed more specific assumptions on f and g. Na.mely: we-assumed conditions
on f and g which would model competition, predation, or mutualx§m in case u and v were
positive. So doing, we gave a fairly broad range of examples ‘for which c‘ontmua. of S(?lutlons
to (1.7) with u having n — 1 simple zeros in (a,b) and v havingm—1 51m1.>1e zeros in (¢.z, b)
exist. Moreover, we demonstrated that such continua link together contmfm of so}utxons
to (1.7) with u having n — 1 simple zeros in (a,b) and v identically zero with continua of
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solutions to (1.7) with u identically zero and v having m — 1 simple zeros in (a,b). In the
process, we obtained information on the range of parameters (A, u) for which (1.7) admits
solutions with state components (u,v) of the (n,m) nodal type in a number of cases. See
{5] for more details.

However, the results of [3] and [5] depended on the abstract global secondary bifurcation
results of [2]. These results require that C, contain a “patch” of the form {(A,u(})) :
A € I}, where I is an open interval and A — u(}) is continuous, in order to consider
{(A, i,u(A),0) : A € I, € R} as the “trivial solutions” to (1.7). Such is not possible if
f(u,0) =0 for all u, for then C, = {(A"™, au,) : @ € R}, where u,, is the unique solution
to (1.5) with A = A(®) such that u, has n — 1 simple zeros in (a,b), u/,(a) > 0, and that

b
/ u? = 1. Consequently, a new approach is needed in order to establish that continua

a

of solutions to (1.7) with state components of (n,m) nodal type emanate from C, in this
case. Moreover, in [5] the linking of solutions to (1.7) having state components of the
(n,0) nodal type to solutions to (1.7) having state components of the (0, m) nodal type via
solutions of the (n,m) nodal type made crucial use of & priori estimates on (u,v) available
because of the presence of “self-regulation” terms in (1.7). When f(u,0) = 0 for all u and
g(0,v) = 0 for all v, obtaining appropriate & priors estimates is far less likely, and again a
new approach is called for in this part of the problem, as well.

Our purpose in this article is to demonstrate that nevertheless such bifurcations do in
fact occur, and, moreover, that continua of solutions to (1.7) with state components of
(n,m) nodal type do in fact link {0y, 00,,0) : @ € R,p € R} to {(», '™, 0,Bv,) :€
R, ) € R}, where v, is the unique solution of

—(p29h) + @2V = p™v,,  in (a,b)

vn(a) = 0 = v, (b)

b
such that v,, has m — 1 simple zeros in (a,b), v/, (a) > 0,and | vZ = 1. In so doing, we
a

make the additional assumption that f(u,v) = f(v) and that g{u,v) = g(u). The results
of the article still obtain in the more general case. However, the extra assumptions make
for a cleaner presentation, and the adaptations needed to generalize are evident.

The remainder of the article is structured as follows. The necessary preliminary results
are given in Section 2. In Section 3, we establish that continua of solutions to (1.7) of (n,m)
nodal type emanate from {(A"™,u, au,,0) : @ € R,u € R} and from {(A, 1,0, 8v,,) :
B € R,x € R}. We conclude the article in Section 4 by demonstrating the linkage of
{(0"), u, 0u,,0) : @ € R,p € IR} and {(A, &t™),0,8v,) : B € R, X € R} via a continuum
of solutions to (1.7) having state components of (n,m) nodal type. The results of this
article, when combined with those of [3] and [5], provide a fairly comprehensive analysis
of the solution structure to (1.1} in the case when n = 2. Moreover, they strongly suggest
a similar structure to the solution set of (1.1) for general n.
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2. The set-up.
Consider the system
Llﬂ- = Au + f(v)u'

in (a,b)
Lov = pv + g(u)v
(2.1) w(a) = 0= u(d
v(a)=0= v(b),

tes the differential operator given by

where for 1 = 1,2, L; deno
Liz = —(p#) + %2

1 d ¢; € Cla,bl. L
€ Clle. bl =2 d(ir these conditions, (2'1) is equiv

i d
functions f,g are assume
ps . . o : alent to the
with positive coefficients pi

to lie in C*(IR) with f(0)=0= g(0). Un
system
Aq[f(v)u]
w5 (2) (4589
u
(2.2) ( v) = ( 0 phz v Aslg(u)v] ( .
i i ator L; (Li subjec
= 1,2, A I8 the inverse of the differential rog;rcﬂa, i L oy, o

where for ¢ = " _is a compact operato 2
Dirichlet boundary conditions) Aixiit?o‘;finpthe Banach space R?* x (C3las b))?, where the

may be regarded as an OPeratorzeq || in (Cl[a, b)) satisfy
B o R x (Chla, b)) and | - Il in (o
morms - Il n 2 (51 el +led

I Qo s 0) WI=L A1 L] I (o) N=EAF |
d | - || is the usu | norm in the Banach space C'{a,b]. Then the right hand side of (2.2)
and || - || is the usual no

can be expressed as

o el el o ()

2 ( )

isfying
24) peati-o | M) 1

bifurcation from the trivial solut

in (Cila,b))?. 1t follows from (2.4) that
0,0) is possible only

to (2.1) at 2 point (A, &,

ions (A, ,0,0)

< 0
when the kernel N(I - LOEN #F \ o )
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where I = ( é 2) is the identity mapping on (C}[a,b])?. Suppose ( : ) # ( 0) €

0
N(I — L(X, ). Then for (A, ) = (,)

Liu=Au in (a,b)
(2.5)

u(a) = 0 = u(d)
and

Ly = py in (a,b)
(2.6)

v(a) = 0 = v(b)

3

with at least one of u and v not identically zero. As is well known, the solution set to (2.5)
can be expressed as :

{(An, i) : @ € Ry =1,2,3,..} U{(},0) : X € R}

where 0 < A\; < Az < --- < Ap -+ and A, — 400 and uy, is the unique element of C§a, b]
characterized by the following:

(1) (An,un) solves (2.5);
(#) ul(a) > 0;

(¢#) u,hasn — 1zerosin (a,b), each of which is simple;

b
(iv) f uldz = 1.

Analogously, the solution set to (2.6) can be expressed as {(um,fvm) : p € R,m =
1,2,3,..} U {(#,0) : p € RR}. Consequently, (2.1) has the two dimensional continua
of solutions {(An, s, aun,0) : @ € R,p € R,n € Z,} and {(A,4m,0,8vs) : f € R,A €
IR,m € Z,} which are naturally regarded as primary bifurcations from the trivial solutions
(A, ,0,0). We denote by Cpo+ the subcontinuum {(An,#,0u,,0) : @ > 0,p € R} and
by Cno,~ the subcontinuum {(An, #, @t,,0) : @ < 0, € R}. We also make the evident
analogous designations Com,+ and Com. If p # pm, for any m € Z, it follows from linear
Sturm-Liouville theory that dim(|JN((I — L(As,))7)) = 1 for any n € Z,. Likewise
r>1
dim(|JN((I = L(A, #m))7)) = 1 for any m € Zy if A # A, for any n € Zy. Then
r>1

the Crandall-Rabinowitz [6] or Alexander-Antman [1] Constructive Bifurcation Theorems
imply that in a neighborhood of a point (A, #,0,0) with g # p,, for any m € Z,, the
intersection of Cy, 0.+ UCpo,~ and the trivial solutions with the neighborhood is the entirety
of the solution set to (2.1). An analogous statement holds in a neighborhood of (A, ¢, 0, 0)
ifA# A, forany n € Z,.
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3. Secondary bifurcation.

We are now in a position to seek continua Cnm of solutions (2.1) emanating from
Cnox of Com+, where Cpm is to have the property that if (A p,u,v) € Cpym, v has n — 1
simple zeros in (a,b) and v has m — 1 simple zeros in (a,b). Suppose that we have a
sequence (X, pf,uf,v") of solutions to (2.1) with v* # 0 and (X, 4, v,v") converging to
(Ans o, oy, 0) for some o € IR and po € IR. Then

v' = pf At + A, (g(u®)v?).
If we let w* = v/ || v* ||, then || v |= 1 and
w' = g At + Az(g(wf)w').
Since {w' : { € Z,} is uniformly bounded in Cl[a,b], the compactness of A, implies there

is a subsequence of {w' : ¢ € Z.}, which we relabel if need be, so that w* — @ in C}la,b]
with || @ ||= 1 and @ satisfying

W = po A2 + Az(g(ou,)m).
Equivalently, o satisfies

Lo —g(ootn) D = pow in (a,b)
(3.1)

But now for any a0, t}:ere is a sequence {ug0"}, m € Z, with p2om < pfoh, pS" - too
0

as m — +00, and p7*" > — || g(@oun) || so that (3.1) has a nontrivial solution precisely
as po = pp",m € Z. Moreover, for fixed n and m, p2" = p,, and p2" depends smoothly
on ¢, while the eigenfunction for (3.1) corresponding to 25" has m — 1 simple zeros in

(a,b). Consequently, we can expect secondary bifurcation from Crno+ to Cpp only along
the arc {(An p2"™, au,,0) : @ € R}.

As noted in the introduction, to realize this secondary bifurcation, we must proceed
along lines somewhat different from those employed in {3]. To this end, consider (2.1). For
5

u € Cjla, b], express u uniquely as u = o@l + w, where & = u, and / dw = 0. Write ) as

A = A, + o. Using the regularity propertiés of f and g, we see that t(xz\,, + o, 1, ol + w,v)
solves (2.1) if and only if

Lyw = M\w +ooii+ af (0)@v + ow + f'(0)vw
(3.2) +ef(v)a+ flv)w in (a,b)

Ly=pv  +g(e)v + g (eB)wy + fo(w)v
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where hm—'t—(s—) = 0 and lin%&@ uniformly for « contained in bounded intervals. There
:—0 8 3+ S

b
are three unknowns in (3.2): w € W = {z € C}[a, b] : /a @z = 0},v € C}{a,b], and ¢ € R.
We need to express (3.2) in the form

(3'3) .z."_': N(a’ H, ;)
bt . .

where z= | v | and N : R? x (W x C}[a,b] x R) — W x Cj[a,b] x IR is completely
o

continuous in order to have the global bifurcation machinery of Alexa.r}der and Antman
[1] at our disposal. But in order to obtain (3.3), we must have an e:qua.tlon .for o 'whlch is
compatible with the equations in (3.2). The net result will be to excise one dlmgnsmn from
(Cla,b])? in (2.1) via @i and compensate via o, thinking of & and u as the.pa.r.a.meters of
the problem. We get the necessary equation by multiplying the first equation in (3.2) by
@ and then integrating by parts. So doing, we obtain

(3.4) 0=oca+ a/:f(v)ﬁz + /abiif(v)w.

Taking the regularity properties of f into account, (3.4) is equivalent to

(5) o=~/ ¢ (0)va? — [ Fo)ar -2 [ "af(v)w

if 0.

Combining (3.2) and (3.5), we see that (2.1) is equivalent to.

w And; af'(0) Ay () ad, (@) w
v | = 0 pAz + A; [g(m‘i)-] 0 v
o o —rof=0 o J\e

(3.6)
ocAiw +f(0)Ar(wv) + adi(f(v)E) + Ay (f(v)w)
+ Azg;(aﬁ.)wv + idz%,(w)v ,
- / OGRS / af (v)w

provided o # 0. However, (3.6) is not yet of the form (3.3), since the right hand side of
(3.6) maps IR? x (W x C}|a,b] x IR) into (Cg[a,d])* x IR, not W x C’é[fz, b x R aslneeded.
This difficulty is easily circumvented by letting P denote the projection from C}[a,b] to

b
W given by Po = ¢ —( /; ¢%)& and replacing (3.6) with the system
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w) (M4 oS ©AP@E) 0
(3.7 ( ): 0 #A2+A§{9(aﬁ)-] 0 ( )
o) o -~rof#0 o o

cAw +f'(0)A1P(wv) + e P(f(v)a) + A1 P(f(v)w)
+ Azg' (0B)wy + Ayfa(w)v

-[we - [arwy
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It is a simple matter to check that the solution sets to (3.6) and (8.7) are identical and
that (3.7) is of the form (3.3).

We may now define F : ((0,00) X IR) x (W x C}[a,b] x IR) — W x Cl[a,b] x IR via the
right hand side of (3.7). Then F(a,u,z) = L(a,p) z +H (e, p1, z) where

w AnA; af' (0)4,P() O
z= ( v ) JI(ep)=| 0 pAz +A2[g£aﬁ)‘] 0
o o —fOfw() o

w
is compact linear on W x C}la,b] x IR, and H ( a,u, | v

c
w
H (a,#: ( v ))
o
ous with lim

M w){[l+[e|~0 = 0 uniformly for (e, #) in compact subsets
w,u o | .

Il (wso) ll + o]

) is completely continu-

of (0,00) x IR. (Note that F could just as easily be defined on ((=00,0) x R) x (W x
Cila,b] x IR).) Since bifurcation from the trivial solutions to

(3.8) I—F(ap,) =0,

where I denotes the identity mapping of W x Cla,b] x IR, correspond to secondary bifur-
cations for (2.1), the Alexander-Antman Multiparameter Global Bifurcation Theorem (1]
will guarantee secondary bifurcation phenomena once an appropriate change of index is
obtained for (3.8); i.e., once we obtain parameters (@1, 1) and (g, p2) so that the Leray-
Schauder degrees degys(I — F(eu, p1,-), B(0,¢),0) and degps(I — F(az,p2,-), B(0,€),0),
where B(0, ) is the e=ball about the origin in W x Ct[a,b] x IR, are defined and unequal.
From [1, Corollary 2.46], it will suffice to find (e1,1) and (ag,p2) so that deg,q(I —
L(ah I“l)s B(Oa 5)3 0) # degLS (I - L(a2a ”2): B(Oa E): 0) '
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w w w 0 )
To this end, suppose [ v ] = L{o,p) | v | with | v | # g . Since I — A\ 4, is
o o o
invertible on W, it must be the case that v = pAzv + A;[g(e@)v] with v # 0. Consequently,
p = p&" for some m € Z. Hence if p # pz" forany m € Z,,deg; (I — L(a, 1), B(0,€),0)
- Fm

is well-defined. Suppose now such is the case for some (a, ). If we let T': [0,1] x W x
C}[a,b] x IR = W x Cj[a,b] x IR be defined by

w —AA1w — saf (0) A, P(@v)

T ( S, { ':)) ] ) U — 2 A0 — Azlg(aﬁ)v] ’

, b
o+ s£'(0) / v
w 0
Tt s,| v =]0 implies v = 0 and consequently that w = 0 and 0 = 0.
g 0
Hence .
degLS(I - L(aaﬂ):B(O:E): )
= degps(1 — K(a,u),B(O,s),O),
where

w w— AAw
(I — K(a, 1)) [ v ] = ( v — pAsv — Aglg(ai)v] ) .

2 28

- = I—XnA;, Bi(0,£),0)-degps(I—
So for such an (e, ) degyg(I — L(e, 1), B(0,€),0) = degps(I— A4y, ),0)-

;1,(:42 - Az[g(aé)-],Bg(O,s),O), where B;(0,¢) is the e—ball about the origin in w a.ndf
B;(0,¢) is the e—ball about the origin in Cl[a,b]. We may now state the main result o
this section.

THEOREM 3.1. There is a connected set C, ., of solutions to (2.1) which is of di-

mension > 2 at each point and such that (A, pt,4,v) € Cpm implie§ that w hasn—1 s:mp}ie
zeros in (;, b) and that v has m — 1 simple zeros in (a,b) emanating from Cno+ along the

curve
{(An, BZ", aug,0) : @ > 0}.

Proof: The result will follow from the Alexander-Antman Multip?,ra.met.er Global Bifué-
cation Theorem [1] and the Crandall-Rabinowitz Constructive Bifurcation Theorem 6]
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applied to (3.8) provided we establish that two conditions hold; first, for § = §{e) > 0 and
sufficiently small,

degys(I — (up" + 6) Az — As[g(d@)], B2(0,¢),0) #
degps(I — (5™ — 6) Az — Az[g(aii) ], B2(0,¢),0)
and second that dim(| JN((I — L{a, #%™))7)) = 1. For the first condition, notice that for
r>1
any a > 0, there is a p = p(a) > 0 so that I — A;[g(e@)-] — pA; is invertible and p&™ # p
and a corresponding 6*(a) > 0 so that p&" +6 — p # pp™ and p&"™ £ § # pp" for any k
provided 0 < § < §*(a).

For such 6,

I - Aslg(ag)] — (s +6) 4
= I— As[g(a@t):] — pAz; — (uE"+6—p)A;

[I — Axfg(am)] — pAs][I — (%" £ 6 — p)(I — Asz[g(eti)] — pAz) 1Ay
It follows that

degys(I — Az[g(ct)] — (um™ £ 6) Az, B2(0,¢),0)

= degys(I — Az[g(aB)] = pAz, B2(0,£),0)

: degLS(I - (”':in +6- p) [I - A2[g(aﬁ)'] - pA2]~1A2’ B2(0’ E):O)'
Hence

degys(I — Azlg(a@)-] — (w3 + 8) Az, B2(0,€),0)

# degps(I — Aafg(a@)] — (n3" — 6) Az, B2(0,¢),0)
provided

degrs(I — (ug™ + 6 — p)[I — Az[g(ag)] — PAz]—iAza B:(0, E‘):0)

# degrs(I — (" — 6 — p)[I — Aszfg(att) ] — pAs]™ Az, By(0,¢),0),
which follows if dim N ((I — ("™ — p)[I — Az[g(aB)] — pAz]142)%) =1

Suppose now that z € N(I — (u&" — p)[I — Azlg(ait)] — pAs]) 1 42).
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Then  z= (u@" — p)[I — Aslg(eit):] — pAs| ™ Azz.
Hence  z— Aj[g(a®)z] — pAzz = p3" Asz — pAsz,
or equivalently
Lyz — g(at)z = uiz in (a,b)

z(a) =0 = z(b).

b
Since the eigenspaces corresponding to (3.1) are one dimensional, z = k¥, where / 7% =

1,7'(a) > 0, and ¥ has m — 1 simple zeros in (a,b). If now 2 € N((I = (pz" = p)[I —
Az[g(au]—PAz] 14,)%), (I — (2" — p)[I — Aslg(am)] — pAz] ™ 4y)z = ko,

hence
z — Aj[g(a@)z] — pAsz — (uE™ — p)Azz
= k(v — Az[g(a@)¥] — pA2b).
1t follows readily that
Lyz — g(af)z — p&"z = k(ul" — p)7.

Multiplying both sides of this equatlon by ¥ and integrating by parts implies k(ug —p) =0.
Hence k = 0, the dlmN(( — (pan — p)[I — Azlg(a@)] — pA2]42)?) = 1 a.nd the first
condition is met.

To see that the second condition is met, suppose that

I — AnAs —af‘ (O)Al(Pﬂ') 0 w 0
0 I — p&rA, —;Ag[g(aﬁ)-] 0 ( v ) = ( 0 ) ,
0 rof#0 &

where I, I, and Iy are the identity mappings in W, Ci[a,b], and IR, respectively. It is

immediate that
w af'(0)(I — AnA;) 1A, P (1)
( v ) = k ( 1) ) .
o —f'(0) f! v

So if (I — L(a,p™)? (
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I~ AnAl ""af'(O)AIP(!—l') 0 w af'(O) (Il - AnAl)_lAIP(ﬁﬁ)
0 L—uitAy— Agfg(en)] O v | =k v,
0 £(0) / 22() Is s ~7(0) / %

In particular, v — p&™Av — Alg(ai)v] = k¥. Then Ly — p2™v — glai)y = kL.
Multiplying by ¥ and integrating by parts yields that

b
0=k [ [(ps0)? + :0%)d,
a
whence k = 0. The second condition and hence the theorem now follow.

From the equivalence of (2.1) and (3.8) for & # 0, we see that C,, corresponds to a
continuum Cp, ,, of nontrivial solutions to (3.8) whose existence is guaranteed by Theorem
2.2 of [1]. Theorem 2.2 of [1] applied to (3.8) asserts that Cp, is global with respect to
the trivial solutions of (3.8} in the sense of conditions (2.4)-(2.6) of Theorem 2.2 of [1].
In particular, if T' is any smooth one-dimensional restriction of the parameters (o,p) €
(0,00) x IR crossing (e, u3>") in such a way as to affect a change of index and also meeting
8((0,00) x IR), the restriction of Cy, along I' either meets the trivial solutions to (3.8) at
some parameter value (e, i) # (o, p2*™) or meets 8(((0, 00) X IR) x (W x Ci[a,b] X R)).

Suppose now that I' in addition is such that T’ meets the curve {(a,p%") : & > 0}
only at (ag,u2>"). Then the restriction to I' of C,,, persists along I' so long as the state
components (u,v) = (o + w,v) remain bounded. To see that such is the case, observe
that the uniqueness theorem for solutions to initial value problems for ordinary differential
equations guarantees that v and v can cease to have n — 1 and m — 1 simple zeros in (a, b),
respectively, only by vanishing identically. If o + w = 0, then « = 0 and w = 0. Since
@ > 0 along T', u must continue to have n — 1 simple zeros in (a,b). Consequently, as T’
meets {{a, p®") : & > 0} only at (op,x2*"), v must also continue to have m — 1 simple
zeros in (a,b), and C, ., persists along I' so long as (u,v) remain bounded.

A natural question arises: does C,,, meet Cb,m,+ or Com,~? To this end, suppose that
(a*, u*, w*, v¥,0%) € C, m and that (o, u¥, w*, v¥, 0*) converges to (0, Z,0,5,5) with ¥ # 0.
Then

Li(c*@ + w¥) = (A, + o*)(cfE + wF) + f(v¥)(cFE + wF)
Lovt = pFo* + g(oFE + w)vk
in (a,b). Passing to the limit in the second equation,
Lyd = v

in (a,b). Since v* has m — 1 simple zeros in (a,b) and # # 0, i = u,, and hence ¥ = fv,,
with g # 0. Then

Cantrell 483

g e

Tara+wt | loFa+ wF |

of g 4+ w* o r e v .
implies that we may assume T converges to &, with & having n — 1 simple zeros

akg + wk ||
in (a,b) and satisfying

Lyt = (A; + 8)8 + f(Bvm)i
in (a,b). Consequently, & = ABm — )., where A8™ is the nth eigenvalue of
(3.9) Lz — f(Bvm)z = Az in (a,b) '
z(a) =0 = 2(b).

Consequently, if (A, + 0, g, oii + w, v) € Cpm approaches Com,z, it does so at a point
(A8 feny O, BU,m). There is no & priori bound on f. Consequently, it seems unlikely that
we can use global bifurcation theory to establish a link between C,, n, and Co,m+. In order
to verify that such a link does in fact occur, in the next section we will make a detailed
analysis of the solution set to (2.1) in a neighborhood of (A, ftm, 0,0). But first let us
observe fairly general conditions on f and g so that }L‘& Mm = o0 and aliggguf‘,;" = -+00.

(This result is of independent interest as a problem in spectral theory. It also shows in the
context above that frequently & priort bounds are not possible on the o and v components
of a solution to (3.8) as (e, i) — (0, 4m).)

PROPOSITION 3.2. Let \2™ be as in (8.9) and assume that f(s) < —ks®, where k is
a positive constant. Then lim A™ = +too.
© B+too
Proof: Since M&™ > A8™ for all n € Z.., it suffices to prove ﬁliﬁ_n ™ — Loo. Further-
—too
more, since —f(s) > ks?, to prove ﬂlizP M™ — oo we need only show pli?w}‘(ﬁ) = +o0o0,
st 00 J—
where A(8) denotes the principal eigenvalue for
(3.10) Liz+kB%2z=2Xz in (a,b)
z(a) =0 = z(b).
The variational characterization of eigenvalues for (3.10) asserts that
)
/ pi(2')? + @12? + kpv2 22
a
z € H}(a,b) /bzz

z#0
ing in B, so that if ﬁlizin A(B) # +oo, there is an M > 0 with A(8) < M for all § > 0.
-+ 00

. Hence A(B) is monotone nondecreas-

A(B) =
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b b
Let zg be a positive eigenfunction for (3.10). Since / p1(2p)? + q1(25)* + B° / kvizi =
a a

b

b
) /kvff,rc!2 A /lcvfnz2
’\(ﬂ)/;z;: T zﬁS g:), and 29—, 2‘9—*083,3-—++oo. Now consider a sub-
[ [+

b
sequence {f#;}2; with §; — oo and zj, satisfying /; [p1(25,)* + @23 = 1. {25}, is
then bounded in Hj(a,b) and hence precompact in Cla,b]. We may assume zg; — Z in

5 ) b
Cla,b]. Since /a kvief = c,-/; 23 with ¢; — 0 as j — oo, /; kvizi — 0as j — co. So

b
/ kv? z? = 0. kv is nonnegative, continuous and nonzero except for m+1 points in [a, b]
a

5
Soz=0. Hence/zf,i—»ﬂasj—*oo. As
a

N b b
1+ ﬂf/a kv;zgi = ,\(ﬁ,-)/‘1 zg’,,
we must conclude that if gﬁgl A(B) # 40, then 1 < 0. Consequently, ﬂlh_‘p. A(B) = +oo.
—T oo —+Foo

4. Linkage.

As noted at the end of the preceding section, we seek to establish that Cpm meets
Com;+ via an analysis of (2.1) in a neighborhood of (A, Em,0,0). As lir%u;;“ = U
a—

and ;in%,\ﬂ'"‘ = An, the solution curves {(An, p%", 0u,,0) : & € R} and {(A2™, p,,,0,

Bvn) : B € R} approach (A, f,0,0) as @ — 0 and § — 0. Consequently, the intersection
of C;,m and any neighborhood of (A, #m,0,0) is nonempty. Moreover, we know by argu-
ments analogous to those of the preceding section that continua of solutions to (2.1) with
v having n — 1 simple zeros in (a,b) and v having m — 1 simple zeros in (a,b) emanate
from {(A%™, im0, Bv,,)} for B> 0 or B < 0. Additionally, the Crandall-Rabinowitz Con-
structive Bifurcation Theorem [6] guarantees that such continua are the only solutions to
(2.1) in a neighborhood of the curve (A8™ 1,0, Bv,), B> 0 or B < 0, not of the form
(A, #m, 0, Bv,n). Thus the linkage we seek will be established if we know that in some neigh-
borhood of (An, #m,0,0) we may continue C, ,, from (An, #2", @, 0) to points arbitrarily
close to (A2™, p,., 0, Bvy,). To this end, we make a Lyapunov-Schmidt reduction for (2.2)
about (An, gm,0,0), following the treatment in [4, Section 3]. We then employ the Implicit
Function Theorem and the & priorf estimates available in a neighborhood of (A, g, 0,0)
to draw the desired conclusion.

We begin with the observation that if A* = A, and p* = g, then (Cola, b)) =

w(r- (Y0 ) er(r- (Y gy )) 9T (@l = (Gl

defined by
) 5) () )

. sufficiently small € > 0 and § > 0. (See [4], [7].) Let é = é(a,B8,0,7) =
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with @ = u, and ¥ = vy, is a linear homeomorphism having the property that T ( Z; ) =
( a
B
7 0\(A; O u A O f(v)u)]
e (5)=(8%) + (o) o= (5 )0 %)) (0 )Gt
b
(4.2) a:/auﬁ

(4.3) o= *vo

u
with o = A— A* and 4y = p—p*. If we denote the right hand side of (4.1) by Sapon ( v |

< &

). It follows as in [4] (see also [7]) that (2.2) is equivalent to

3

i i 2 into itself for | (e, 8,0,7) |< 6 for
then S, is a contraction of B((0,0),€) € (Cola, b])? into its I ( PR
(e, 8,0,7)
denote the unique fixed point in B((0,0),€) of § = Sag,0,7- Then ¢ is smooth in (e, B,0,7)

o 0 . 0) ([ ot i =0 = (0,0, for all
and ¢ = ,}E&Sn ( 0 ). Since S ( 0) = (ﬂﬁ 3 u'(O,O,U:’Y) 0 v( ’ 01’7)

(o,7). Since T :j ) = %Z with 7} and T linear homeomorphisms from Cy[a, b] onto

itself, it is easy to see that in fact (0, 8,0,7) =0 for all (ﬂ,a,A '(7) a.lx;d ﬁ(c)z, 0,0,7) = 0for all
L@ 2 . H(e,B,07) _ O .
(a,0,7). Hence lin%)ﬂo-tl-%—g’—’ﬁ- = ézﬁ(o,ﬂ,a, ~) and ’1315(1)—-——————— = —a—v(a,O,a, ~).
a— . )
As a consequence, i(a,f,0,7) = «ii(a,,0,7) and #(e, B,0,7) = Bi(e,B,0,7) with
i({a, B,0,v) and #(a, B,0,7) uniformly bounded for | (2, B8,0,7) |< 6.
) - lims" ( )
3 00

. w) _
Let us suppose that f(v) = kiv + h.o.t. and g(u) = kzu + h.o.t. Since then S| |} =

oi + T {o A + Ax (ke + hoot)} ), calculations show that S? ( g ) and §° ( )
By + T{l{'ysz + Az(kzuv + h.O.t.)}

have the form

<

We can obtain a more detailed expansion using the fact that ¢ = (

co~—"0o o

@i + 0oX;1E + k efTT A (59) + aPy(e, B,0,7)
(4.4) L ,
ﬁﬁ + ’Yﬂ/-l';;lﬁ + kZQﬂT; AZ(uU) + ﬁPZ(aa ﬂa g, '7)

where P, and P, are of order at least two in all terms. It follows that $ muit have the
same form. Now (2.2) is solvable precisely when 4(a, 8,0, ~) solves (4.2) and #(e,B,0,7)
solves (4.3). From (4.4), these conditions for solvability of (2.2) reduce to
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s b
oad;t + klaﬁ/ (17 4y (w9)]a + a/ Py(e,B,0,7)2 =0
(4.5)

1But + kzaﬂ/:[T{IAg(ﬁﬁ)]ﬁ + ﬂ/:Pz(a,ﬂ,o, 7)o =0.

When o # 0 and 8 # 0, (4.5) is equivalent to

b b
N+ kf [ [T Ax(w0)]a + / Py(a,B,0,7)8 =0
(4.6)

b ]
iz + ke[ (15 4x(@0)[0 + [ Pa(e,B,0,7)7 = 0.
a a

Now define F : B((0,0,0,0),6) C R* — IR? by

; (Fl(aaﬂ’o'sq) )
F S—
\: F2(a;ﬂ7017)

( ot + klﬁfb[Tl‘lAl(ﬁﬁ)]ﬁ + /bPl(a,ﬂ,a,'y)ﬁ.

b b
it + ke[ (17 Aa(w0) [0 + [ P B,0,7)0

oF, 9,
dc Oy
Then =
oF, 9F,
doc Oy
b 9P, b P -
-1 L o I
0 [ Sitepome [ (8107
on . -1, [OF 5
[ S (b0 bkt [ G oo ron)e

Since A, # 0 and u,, # 0, it follows that for | (o, 8,0,7) | sufficiently small, F

2L QA W™WR

g may be solved for (,7) in terms of (@, 5). As a consequence, the solution set to
(2.2) can be expressed in the form

4.7 (Aa+o(eB), tm + (e, B), (e, B,0(e, B),7(ex, B)), B(ex, B, 0(, B), v(, B)))
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near any solution (A, + o, 4 + 7, 8(e, 8,0,),¥(a, 8,0,7)) with | (e, 8,0,7) | sufficiently
small, @ # 0 and 8 # 0. The remarks at the beginning of this section show that C,,, links
to Co,m,+ provided we can continue solutions of the form (4.7) for | (e, 8, 0,7) | sufficiently
small and o # 0, 8 #0.

Suppose now that {(of, 8%,0%,~4¥)}2, is a sequence in B((0,0,0,0),6) such that of #
0, ¥ #0,

b
a,k =/ ﬁ'(ak,ﬂkaokaqk)ﬁ
a

b
a
and o* — 0 and % — 0. Let 4, = @(c*, f*,0*,4*) and 9, = #(c*, B*,0*,4%). Then @ # 0
and 9 # 0 satisfy :

Lyfiy = (Ap + 0%) iy + f(92) e
in (a,b)
Lot = (e + %) 0k + g(f) 02

with di(a) = 0 = () and #¢(a) = 0 = 9,(b). Since &; = o*ii(c*, f%,0%,7%) and 0, =

B¥i(o*, B¥, 0*,+*), where i and ¥ are uniformly bounded for (e, 8, 0,7) € B((0,0,0,0),6), i, —

0 and 93 — 0. We may now employ a compactness argument to assert that a subsequence

g O
of - — converges to (u*,v*), where || u* [|[= 1 =] v* || and «* and v* satis
(o) (4,0°), whete || * =1 =] o* | f
Liu* = (A, +5)u’
in (a,bd)
Lyv* = (pm + 7)v”

with u*(a) = 0 = u*(b), v*(a) =0 = v*(b) and (0,0,7,7) € B((0,0,0,0),5). Consequently,
(6,%) = (0,0). So if p > 0 is given, there is a n > 0 so that if | (e, f) |[< 9, @ #0, f#0,
and

o= [ 8(a,f,0,m)

b
ﬂ=/;ﬁ(a,ﬂ,0,’7)t7
for (e, 8,0,7) € B((0,0,0,0),6), then | (0,7) |< p.

Finally, to establish the linkage of C,,, to Com+, we proceed as follows. Choose
(0, Bo, 00, 0) s0 that g > 0, o # 0, | (20,B0) |< 1, | (60,%) |< p and (A, + oo, i +
Yo, &0, Bo, 00,%0) ¥(c0, Bo, G0,Y0)) € Cam. The preceding results guarantee that we can
express Cnm in  a neighborhood of (A + oo,em + 70, %(c0,B0,00,%),
(e, Bo, 00,70)) as a function of (e, #) and that this function can be continued (keeping o >
0, B # 0) into arbitrarily small neighborhoods of the curve of solutions {(A\?™, 1., 0, fv,,)},
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for f>0if fo>0 and for B < 0if fo < 0. As previously noted, the only such solutions
are those emanating from Com,t- Consequently, Cp y, must link to Com,+ of Com,—-
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